3.2.100 \(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx\) [200]

3.2.100.1 Optimal result
3.2.100.2 Mathematica [C] (warning: unable to verify)
3.2.100.3 Rubi [A] (verified)
3.2.100.4 Maple [B] (verified)
3.2.100.5 Fricas [A] (verification not implemented)
3.2.100.6 Sympy [F]
3.2.100.7 Maxima [F]
3.2.100.8 Giac [F]
3.2.100.9 Mupad [F(-1)]

3.2.100.1 Optimal result

Integrand size = 35, antiderivative size = 156 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=-\frac {(7 A-3 B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {(5 A-B) \sin (c+d x)}{2 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

output
-1/4*(7*A-3*B)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a 
*cos(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*(A-B)*sin(d*x+c)/d/(a+a*cos(d*x+ 
c))^(3/2)/cos(d*x+c)^(1/2)+1/2*(5*A-B)*sin(d*x+c)/a/d/cos(d*x+c)^(1/2)/(a+ 
a*cos(d*x+c))^(1/2)
 
3.2.100.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 2.59 (sec) , antiderivative size = 423, normalized size of antiderivative = 2.71 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\frac {\cos ^3\left (\frac {1}{2} (c+d x)\right ) \left (30 (A-B) \arctan \left (\frac {1-2 \sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )-30 (A-B) \arctan \left (\frac {1+2 \sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )-\frac {20 (A-B) \sqrt {\cos (c+d x)}}{-1+\sin \left (\frac {1}{2} (c+d x)\right )}-\frac {20 (A-B) \sqrt {\cos (c+d x)}}{1+\sin \left (\frac {1}{2} (c+d x)\right )}+\frac {5 (A-B) \left (-1+2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {\cos (c+d x)} \left (\cos \left (\frac {1}{4} (c+d x)\right )+\sin \left (\frac {1}{4} (c+d x)\right )\right )^2}-\frac {5 (A-B) \left (1+2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {\cos (c+d x)} \left (-1+\sin \left (\frac {1}{2} (c+d x)\right )\right )}+\frac {(A+3 B) \csc ^3\left (\frac {1}{2} (c+d x)\right ) \left (5 (1+4 \cos (c+d x)+\cos (2 (c+d x))) \left (1-\cos (c+d x)+\text {arctanh}\left (\sqrt {-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \cos (c+d x) \sqrt {2-2 \sec (c+d x)}\right )-2 \operatorname {Hypergeometric2F1}\left (2,\frac {5}{2},\frac {7}{2},-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right ) \sin (c+d x) \tan (c+d x)\right )}{2 \cos ^{\frac {3}{2}}(c+d x)}\right )}{10 d (a (1+\cos (c+d x)))^{3/2}} \]

input
Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(3 
/2)),x]
 
output
(Cos[(c + d*x)/2]^3*(30*(A - B)*ArcTan[(1 - 2*Sin[(c + d*x)/2])/Sqrt[Cos[c 
 + d*x]]] - 30*(A - B)*ArcTan[(1 + 2*Sin[(c + d*x)/2])/Sqrt[Cos[c + d*x]]] 
 - (20*(A - B)*Sqrt[Cos[c + d*x]])/(-1 + Sin[(c + d*x)/2]) - (20*(A - B)*S 
qrt[Cos[c + d*x]])/(1 + Sin[(c + d*x)/2]) + (5*(A - B)*(-1 + 2*Sin[(c + d* 
x)/2]))/(Sqrt[Cos[c + d*x]]*(Cos[(c + d*x)/4] + Sin[(c + d*x)/4])^2) - (5* 
(A - B)*(1 + 2*Sin[(c + d*x)/2]))/(Sqrt[Cos[c + d*x]]*(-1 + Sin[(c + d*x)/ 
2])) + ((A + 3*B)*Csc[(c + d*x)/2]^3*(5*(1 + 4*Cos[c + d*x] + Cos[2*(c + d 
*x)])*(1 - Cos[c + d*x] + ArcTanh[Sqrt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)] 
]*Cos[c + d*x]*Sqrt[2 - 2*Sec[c + d*x]]) - 2*Hypergeometric2F1[2, 5/2, 7/2 
, -(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]*Sin[(c + d*x)/2]^4*Sin[c + d*x]*Tan[ 
c + d*x]))/(2*Cos[c + d*x]^(3/2))))/(10*d*(a*(1 + Cos[c + d*x]))^(3/2))
 
3.2.100.3 Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.01, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.257, Rules used = {3042, 3457, 27, 3042, 3463, 27, 3042, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\int \frac {a (5 A-B)-2 a (A-B) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (5 A-B)-2 a (A-B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (5 A-B)-2 a (A-B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {\frac {2 \int -\frac {a^2 (7 A-3 B)}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {2 a (5 A-B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 a (5 A-B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-a (7 A-3 B) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 a (5 A-B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-a (7 A-3 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3261

\(\displaystyle \frac {\frac {2 a^2 (7 A-3 B) \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}+\frac {2 a (5 A-B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {2 a (5 A-B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {\sqrt {2} \sqrt {a} (7 A-3 B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

input
Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(3/2)),x 
]
 
output
-1/2*((A - B)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/ 
2)) + (-((Sqrt[2]*Sqrt[a]*(7*A - 3*B)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[ 
2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/d) + (2*a*(5*A - B)*Sin[ 
c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]))/(4*a^2)
 

3.2.100.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 
3.2.100.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(352\) vs. \(2(131)=262\).

Time = 7.91 (sec) , antiderivative size = 353, normalized size of antiderivative = 2.26

method result size
default \(\frac {\left (7 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )-3 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+14 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {2}-6 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {2}+7 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, A \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {2}-3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, B \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {2}+10 A \sin \left (d x +c \right ) \cos \left (d x +c \right )-2 B \sin \left (d x +c \right ) \cos \left (d x +c \right )+8 A \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{4 a^{2} d \left (1+\cos \left (d x +c \right )\right )^{2} \sqrt {\cos \left (d x +c \right )}}\) \(353\)
parts \(\frac {A \left (7 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+5 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+14 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+4 \sqrt {2}\, \sin \left (d x +c \right )+7 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{4 d \left (1+\cos \left (d x +c \right )\right )^{2} \sqrt {\cos \left (d x +c \right )}\, a^{2}}+\frac {B \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {a}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}}\, \left (-\sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-3 \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {2}}{4 d \sqrt {-\frac {\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}-1}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}}\, a^{2}}\) \(379\)

input
int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^(3/2),x,method=_RET 
URNVERBOSE)
 
output
1/4/a^2/d*(7*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)*cos(d*x+c)^2*arcs 
in(cot(d*x+c)-csc(d*x+c))-3*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)*co 
s(d*x+c)^2*arcsin(cot(d*x+c)-csc(d*x+c))+14*A*(cos(d*x+c)/(1+cos(d*x+c)))^ 
(1/2)*cos(d*x+c)*arcsin(cot(d*x+c)-csc(d*x+c))*2^(1/2)-6*B*(cos(d*x+c)/(1+ 
cos(d*x+c)))^(1/2)*cos(d*x+c)*arcsin(cot(d*x+c)-csc(d*x+c))*2^(1/2)+7*(cos 
(d*x+c)/(1+cos(d*x+c)))^(1/2)*A*arcsin(cot(d*x+c)-csc(d*x+c))*2^(1/2)-3*(c 
os(d*x+c)/(1+cos(d*x+c)))^(1/2)*B*arcsin(cot(d*x+c)-csc(d*x+c))*2^(1/2)+10 
*A*sin(d*x+c)*cos(d*x+c)-2*B*sin(d*x+c)*cos(d*x+c)+8*A*sin(d*x+c))*(a*(1+c 
os(d*x+c)))^(1/2)/(1+cos(d*x+c))^2/cos(d*x+c)^(1/2)
 
3.2.100.5 Fricas [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.29 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=-\frac {\sqrt {2} {\left ({\left (7 \, A - 3 \, B\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (7 \, A - 3 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (7 \, A - 3 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) - 2 \, {\left ({\left (5 \, A - B\right )} \cos \left (d x + c\right ) + 4 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}} \]

input
integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algo 
rithm="fricas")
 
output
-1/4*(sqrt(2)*((7*A - 3*B)*cos(d*x + c)^3 + 2*(7*A - 3*B)*cos(d*x + c)^2 + 
 (7*A - 3*B)*cos(d*x + c))*sqrt(a)*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) 
+ a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x 
 + c))) - 2*((5*A - B)*cos(d*x + c) + 4*A)*sqrt(a*cos(d*x + c) + a)*sqrt(c 
os(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^3 + 2*a^2*d*cos(d*x + c)^2 
+ a^2*d*cos(d*x + c))
 
3.2.100.6 Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((A+B*cos(d*x+c))/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(3/2),x)
 
output
Integral((A + B*cos(c + d*x))/((a*(cos(c + d*x) + 1))**(3/2)*cos(c + d*x)* 
*(3/2)), x)
 
3.2.100.7 Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algo 
rithm="maxima")
 
output
integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(3 
/2)), x)
 
3.2.100.8 Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algo 
rithm="giac")
 
output
integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(3 
/2)), x)
 
3.2.100.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(3/2)),x 
)
 
output
int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(3/2)), 
x)